

Terminologies and Ontologies in Healthcare: a snapshot for the early 21st century

Christopher G Chute MD DrPH Professor Biomedical Informatics Mayo Clinic College of Medicine

Congreso Regional de Informacin en Ciencias de la Salud Rio de Janeiro, 19 September 2008

From Practice-based Evidence to Evidence-based Practice

Value Proposition

"Those with more detailed, reliable and comparable data for cost and outcome studies, identification of best practices, guidelines development, and management will be more successful in the marketplace."

SP Cohn; Kaiser Permanente

Disease Understanding Constrained by Knowledge

- Carolus Linnaeus
 Carl von Linné
 - Genera Morborum (1763)

 Underscored Content Difficulty
 Pathophysiology vs. Manifestation e.g., Rabies as psychiatric disease

The Genomic Era

- The genomic transformation of medicine far exceeds the introduction of antibiotics and aseptic surgery
- The binding of genomic biology and clinical medicine will accelerate
- The implications for *shared semantics* across the basic science and clinical communities are unprecedented

The Continuum Of Health Classification Biology meets Clinical Medicine

© Mayo Clinic College of Medicine 2008

The Impact of Digital Science: An Enabling Aspect of Big Science?

- Physics and Astronomy focus on datasets
- Biology and Medicine are aggregating larger datasets and electronic knowledge resources
- Mechanisms for analyzing huge (terabyte) level datasets are now commonplace
- Distributed computing and Grids:
 - Networked data data Grids
 - Networked computational power computing Grids

Issues and Challenges: System Design and Common Models

- If biomedicine is becoming "big" and digital...
- Methods, data, and information workflow must scale across the enterprise
- Ad hoc solutions must fit into larger informatics architecture
- Data and results must be "interoperable"
- If Translational Research is to succeed, we must bridge data and knowledge from research to practice

Blois, 1988

Medicine and the nature of vertical reasoning

- Molecular: receptors, enzymes, vitamins, drugs
- Genes, SNPs, gene regulation
- Physiologic pathways, regulatory changes
- Cellular metabolism, interaction, meiosis,...
- Tissue function, integrity
- Organ function, pathology
- Organism (Human), disease
- Sociology, environment, nutrition, mental health...

© Mayo Clinic College of Medicine 2008

- Pharmacogenomics enzyme functionality
- Physiologist cellular function

Biomedical Informati

- Systems biologist pathway circuit flow
- Sub-specialist organ functioning
- Patient/Clinician disease manifestation
- Public Health population characteristics

Highly specific to use-case context

Cancer Phenotype

- Increasingly dependent on genomic characteristics
- Blend with pathology, imaging, laboratory
- Extent of disease measures are crucial
- Comparable and consistent data ultimately depends upon common ontologies
- BiomedGT
- SNOMED CT
- ICD-O

- HUGO
- GO
- Adverse

© May EINicollegSof Medicine 2008

- Drugs Rx
- Radiation RT
- Surgury Px

A Synthesis of Modern Terminologies The WHO ICD-11 Project

Some Premises for ICD-11 development

- Rubrics defined by Aggregation Logics from terminologies
- Human language definitions will be explicit
- "core" representation will be in description logic based ontology
- A linear serialization will be derived as a view to maintain longitudinal consistency
 - May require corresponding "rules" for practical use

Familiar Points Along Continuum Modern Health Vocabularies

- Nomenclature Highly Detailed Descriptions (SNOMED)
- Classification Organized Aggregation of Descriptions into a Rubric (ICDs)
- Groupings High Level Categories of Rubrics (DRGs)

- ICD11 Use Cases Scientific consensus of clinical phenotype
- **Public Health Surveillance**
 - Mortality
 - **Public Health Morbidity**
- **Clinical data aggregation**
 - Metrics of clinical activity
 - **Quality management**
 - **Patient Safety**
 - **Financial administration**
 - Case mix
 - Resource and the Callet of Medicine 2008

Traditional Hierarchical System ICD-10 and family

© Mayo Clinic College of Medicine 2008

Addition of structured attributes to concepts

Addition of semantic arcs - Ontology

Serialization of "the cloud" Algorithmic Derivation

MAYO CLINIC Biomedical Informatics

[-] ICD10WHO

[-] ICD10 Certain conditions originating in the perinatal period (CHAPTER XVI)(P00-P96) [-] ICD10 Birth trauma(P10-P15) [-] ICD10 Birth injury to peripheral nervous system(P14) [+] ICD10 Birth injuries to other parts of peripheral nervous system(P14.8) [+] ICD10 Birth injury to peripheral nervous system unspecified(P14.9) [+] ICD10 Erb's paralysis due to birth injury(P14.0) [+] ICD10 Klumpke's paralysis due to birth injury(P14.1) 2 [+] ICD10 Other brachial plexus birth injuries(P14.3) [+] ICD10 Phrenic nerve paralysis due to birth injury(P14.2) [-] ICD10 Birth injury to scalp(P12) [+] ICD10 Birth injury to scalp unspecified(P12.9) [+] ICD10 Bruising of scalp due to birth injury(P12.3) [+] ICD10 Cephalhaematoma due to birth injury(P12.0) [+] ICD10 Chignon due to birth injury(P12.1) [+] ICD10 Epicranial subaponeurotic haemorrhage due to birth injury(P12.2) [+] ICD10 Monitoring injury of scalp of newborn(P12.4) [+] ICD10 Other birth injuries to scalp(P12.8) [-] ICD10 Birth injury to skeleton(P13) [+] ICD10 Birth injuries to other parts of skeleton(P13.8) [+] ICD10 Birth injury to femur(P13.2) [+] ICD10 Birth injury to other long bones(P13.3) [+] ICD10 Birth injury to skeleton unspecified(P13.9) [+] ICD10 Fracture of clavicle due to birth injury(P13.4) [+] ICD10 Fracture of skull due to birth injury(P13.0) [+] ICD10 Other birth injuries to skull(P13.1) [-] ICD10 Intracranial laceration and haemorrhage due to birth injury(P10) [+] ICD10 Cerebral haemorrhage due to birth injury(P10.1) [+] ICD10 Intraventricular haemorrhage due to birth injury(P10.2) [+] ICD10 Other intracranial lacerations and haemorrhages due to birth injury(P10.8) [+] ICD10 Subarachnoid haemorrhage due to birth iniurv(P10.3)

Linear views may serve multiple use-cases Morbidity, Mortality, Quality, ...

pint's paralysis due to birth inpury(P14.1)

to other nexts of shelpton(D1) E

mury to other inna haven(P13.3)

© Mayo Clinic College of Medicine 2008

[-] ICD10 Certain conditions originating in the perinatal period (CHAPTER XVI)(P00-P96) [-] ICD10 Birth trauma(P10-P15) [-] ICD10 Birth injury to peripheral nervous system(P14) [+] ICD10 Birth injuries to other parts of peripheral nervous system(P14.8) [+] ICD10 Birth injury to peripheral nervous system unspecified(P14.9) [+] ICD10 Erb's paralysis due to birth injury(P14.0) [+] ICD10 Klumpke's paralysis due to birth injury(P14.1) 2 [+] ICD10 Other brachial plexus birth injuries(P14.3) [+] ICD10 Phrenic nerve paralysis due to birth injury(P14.2) [-] ICD10 Birth injury to scalp(P12) [+] ICD10 Birth injury to scalp unspecified(P12.9) [+] ICD10 Bruising of scalp due to birth injury(P12.3) [+] ICD10 Cephalhaematoma due to birth injury(P12.0) [+] ICD10 Chignon due to birth injury(P12.1) [+] ICD10 Epicranial subaponeurotic haemorrhage due to birth injury(P12.2) [+] ICD10 Monitoring injury of scalp of newborn(P12.4) [+] ICD10 Other birth injuries to scalp(P12.8) [-] ICD10 Birth injury to skeleton(P13) [+] ICD10 Birth injuries to other parts of skeleton(P13.8) [+] ICD10 Birth injury to femur(P13.2) [+] ICD10 Birth injury to other long bones(P13.3) [+] ICD10 Birth injury to skeleton unspecified(P13.9) [+] ICD10 Fracture of clavicle due to birth iniurv(P13.4) [+] ICD10 Fracture of skull due to birth injury(P13.0) [+] ICD10 Other birth injuries to skull(P13.1) [-] ICD10 Intracranial laceration and haemorrhage due to birth injury(P10) [+] ICD10 Cerebral haemorrhage due to birth injury(P10.1) [+] ICD10 Intraventricular haemorrhage due to birth injury(P10.2) [+] ICD10 Other intracranial lacerations and haemorrhages due to birth injury(P10.8) [+] ICD10 Subarachnoid haemorrhade due to birth iniurv(P10.3)

Ga	Coursh
90	Search

navigation

- Main Page
- Community portal
- Current events
- Task List
- Recent changes
- Help

icd10 classifications

- ICD10WHO
- ICD10CM
- ICD10AM
- QueryByCode

icd10 proposals

- Add Proposal
- Add NewConcept
- Browse Proposal
- By CurationStatus

toolbox

- What links here
- Related changes
- Upload file
- Special pages
- OntologyBrowser

				Log in / create account
rticle	discussion	view source	history	
	/:L.:			

LexWiki

(Redirected from Main Page)

Leave a comment ...

ICD10+ Collaborative Revision Platform

This is a ICD10+ collaborative content development platform based on Semantic MediaWiki.

See Quick Start Guide - A walk through the wiki and workflow process

ICD10 Classifications

- ICD10WHO The Second Edition of the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10).
- ICD10CM The 2007 release of International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM).
- ICD10AM The Fifth Edition of International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM).

LexWiki SandBox

Users may play here to get familiar with ICD10 content representation and proposal creation. See Help Page.

[+] SandBox ICD10 Other leukaemias of specified cell type(C94)

User Scenarios and Usability

- User Scenarios a page to describe the potential user roles and general user scenarios.
- ICD Collaborative Platform Integration a collaborative effort for integration of the LexWiki with the WHO ICD Revision Platform .
- LexWiki Feature Request a page to add your feature request.

testGraph

Getting started with Wikis

Searcing

Go	Search
00	ocaru

navigation

- Main Page
- Task List
 Recent changes
- Help
- icd10 classifications
- ICD10WHO
- ICD10CM
- ICECI
- Orphanet
- QueryByCode
- browse proposals
- All Proposals
- By CurationStatus
- toolbox
- What linke hara

Category: Orphanet Lesch Nyhan syndrome(PatId197)

Subcategories				[show]	
Proposals				[show]	2
Lexical	Properties	Associations	Factbox		

LUU III / CIEdle acci

Lexical

category

MAYO CLINIC Biomedical Informatics

Concept Code: PatId197

Preferred Name: Lesch-Nyhan syndrome

view source

Coding Scheme: urn:dns:bmi.mayo.edu:orphanet

Definition: Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of the enzymatic deficiency. The prevalence is estimated at 1/380,000 live births in Canada, and 1/235,000 live births in Spain. Uric acid overproduction is present in all HPRT-deficient patients and is associated with lithiasis and gout. Neurological manifestations include sev action dystonia, choreoathetosis, ballismus, cognitive and attention deficit, and self-injurious behaviour. The most severe forms are know as Lesch-Nyhan syndrome (patients are normal at birth and diagnosis can be accomplished when psychomotor delay becomes apparen Partial HPRT-deficient patients present these symptoms with a different intensity, and in the least severe forms symptoms may be unapparent. Megaloblastic anaemia is also associated with the disease. Inheritance of HPRT deficiency is X-linked recessive, thus male are generally affected and heterozygous female are carriers (usually asymptomatic). Human HPRT is encoded by a single structural gen on the long arm of the X chromosome at Xq26. To date, more than 300 disease-associated mutations in the <i>HPRT1</i>

Orphanet_textualPresentation:Lesch-Nyhan syndrome URI: urn:dns:bmi.mayo.edu:orphanet:PatId197

Association Graph

Category:Orphanet_Lesch_Nyhan_syndrome(PatId197)	HAS_CLINICAL_SIGN(Very frequent)	Category:Orphanet_Mental_reta
	HAS_CLINICAL_SIGN(Frequent)	Category:Orpha
	PAR	Category:Orphanet_Anaemia_megaloblastic_o
	HAS_CLINICAL_SIGN(Very frequent)	Category:Orphanet_
	HAS_CLINICAL_SIGN(Very frequent)	Category:Orphanet_Beha
	PAR	Category:Orphanet_Dystonia_associated_wit
	PAR	Category:Orphanet_Gen
	HAS_CLINICAL_SIGN(Frequent) >>	Category:Orpha
	HAS_CLINICAL_SIGN(Very frequent)	Category:Orphanet_Hype
	HAS_CLINICAL_SIGN(Very frequent)	Category:Orphane
	PAR	Category:Orphanet_Intellectual_deficient

Discussions with IHTSDO International Health Terminology (IHT)

- IHT (SNOMED) will require high-level nodes that aggregate more granular data
 - Use-cases include mutually exclusive, exhaustive,...
 - Sounds a lot like ICD
- ICD-11 will require lower level terminology for aggregation logic definitions
 - Detailed terminological underpinning
 - Sounds a lot like SNOMED

ICD-11

Potential Future States

SNOMED

Ghost ICD

Ghost SNOMED

© Mayo Clinic College of Medicine 2008

© Mayo Clinic College of Medicine 2008 /////

/ N.N.A.

2.399

TION !

2.54

Advantages to Collaboration

- Both organizations avoid "Ghost" emulations
- Both organizations leverage expertise and content
 - More resources brought to the table
- Both organizations retain independent intellectual property and derivatives (e.g. Linear formats of ICD-11)
- Mappings become moot
 - Aggregation of SNOMED is definitional to ICD

Caveat ICD and IHTSDO

- No agreements have been finalized
- Intellectual property sharing is expected
- Shared tooling is being discussed
- Harmonization Board has been proposed

Conclusion

- Biomedicine concepts have become complex and intertwined
- Research synergies will depend upon established interoperability standards
- Standards are exploring "inter-standard" interoperability
- Vocabularies and ontologies will continue to increase in importance for intelligent health care

